Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements

نویسندگان

  • A. T. Lambe
  • A. T. Ahern
  • L. R. Williams
  • J. G. Slowik
  • J. P. S. Wong
  • J. P. D. Abbatt
  • W. H. Brune
  • N. L. Ng
  • J. P. Wright
  • D. R. Croasdale
  • D. R. Worsnop
  • T. B. Onasch
چکیده

Motivated by the need to develop instrumental techniques for characterizing organic aerosol aging, we report on the performance of the Toronto Photo-Oxidation Tube (TPOT) and Potential Aerosol Mass (PAM) flow tube reactors under a variety of experimental conditions. The PAM system was designed with lower surface-area-tovolume (SA/V) ratio to minimize wall effects; the TPOT reactor was designed to study heterogeneous aerosol chemistry where wall loss can be independently measured. The following studies were performed: (1) transmission efficiency measurements for CO2, SO2, and bis(2-ethylhexyl) sebacate (BES) particles, (2) H2SO4 yield measurements from the oxidation of SO2, (3) residence time distribution (RTD) measurements for CO2, SO2, and BES particles, (4) aerosol mass spectra, O/C and H/C ratios, and cloud condensation nuclei (CCN) activity measurements of BES particles exposed to OH radicals, and (5) aerosol mass spectra, O/C and H/C ratios, CCN activity, and yield measurements of secondary organic aerosol (SOA) generated from gas-phase OH oxidation of m-xylene and α-pinene. OH exposures ranged from (2.0± 1.0)× 1010 to (1.8± 0.3)× 1012 molec cm−3 s. Where applicable, data from the flow tube reactors are compared with published results from the Caltech smog chamber. The TPOT yielded narrower RTDs. However, its transmission efficiency for SO2 was lower than that for the PAM. Transmission efficiency for BES and H2SO4 particles was size-dependent and was similar for the two flow Correspondence to: T. B. Onasch ([email protected]) tube designs. Oxidized BES particles had similar O/C and H/C ratios and CCN activity at OH exposures greater than 1011 molec cm−3 s, but different CCN activity at lower OH exposures. The O/C ratio, H/C ratio, and yield of m-xylene and α-pinene SOA was strongly affected by reactor design and operating conditions, with wall interactions seemingly having the strongest influence on SOA yield. At comparable OH exposures, flow tube SOA was more oxidized than smog chamber SOA, possibly because of faster gas-phase oxidation relative to particle nucleation. SOA yields were lower in the TPOT than in the PAM, but CCN activity of flow-tubegenerated SOA particles was similar. For comparable OH exposures, α-pinene SOA yields were similar in the PAM and Caltech chambers, but m-xylene SOA yields were much lower in the PAM compared to the Caltech chamber.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical e...

متن کامل

Climate-relevant physical properties of molecular constituents for isoprene-derived secondary organic aerosol material

Secondary organic aerosol (SOA) particles, formed from gas-phase biogenic volatile organic compounds (BVOCs), contribute large uncertainties to the radiative forcing that is associated with aerosols in the climate system. Reactive uptake of surface-active organic oxidation products of BVOCs at the gas–aerosol interface can potentially decrease the overall aerosol surface tension and therefore i...

متن کامل

Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA...

متن کامل

Isoprene forms secondary organic aerosol through cloud processing: model simulations.

Isoprene accounts for more than half of non-methane volatile organics globally. Despite extensive experimentation, homogeneous formation of secondary organic aerosol (SOA) from isoprene remains unproven. Herein, an incloud process is identified in which isoprene produces SOA. Interstitial oxidation of isoprene produces water-soluble aldehydes that react in cloud droplets to form organic acids. ...

متن کامل

Biogenic potassium salt particles as seeds for secondary organic aerosol in the Amazon.

The fine particles serving as cloud condensation nuclei in pristine Amazonian rainforest air consist mostly of secondary organic aerosol. Their origin is enigmatic, however, because new particle formation in the atmosphere is not observed. Here, we show that the growth of organic aerosol particles can be initiated by potassium-salt-rich particles emitted by biota in the rainforest. These partic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011